Evaluation of RT-PCR data using

Evaluation of RT-PCR using

<u>A (extremely) short introduction to RT-PCR</u> <u>CT-value</u> <u>Import ct-values => Expression matrix</u> <u>Edit the header / data</u> <u>Analyze / view your data</u> <u>dCT-Calculation</u> <u>ddCT – Calculation</u>

PCR

- run certain number of cycles (e.g. 30)
- analyse amplified product e.g.on agarose gel

Problem: some gene is already amplified, some other gene not vsibile yet Solution: take aliquots after certain number of cycles (e.g. 10,15,20,25) and analyze

RT-PCR

Continuously monitor amount of synthesized dsDNA

- find when "exactly"a certain "amount" of dsDNA is synthesized for each sample
- monitor dynamics
- direct access to quantitative data

Online detection - fluorescence measurment

Sybr green:

- doesn't fluoresce by itsself
- intercalates into dsDNA => now it emits

Advantage:

- simple
- cheap

Problem:

- stain any kind of dsDNA
- length dependant 2xPCR product length mimiques 2x higher expression
- sequence dependant ??

ABI

Online detection - fluorescence measurement

TaqMan

- 3rd reporter primer with Fluorophor and Quencher in close proximity, binds in between PCR primers
- reporter primer doesn't fluororesce quencher internally "digests" light absorbed by fluorophor
- during second strand sysnthesis, polymerase will digest reporter primer sitting in its way
- quencher gets divided from fluorophor
- fluorophor can emit flurescent light

Advantage:

- signal direct correponding to synthesized copy number
- higher specificity: 3 primer have to bind in the correct order
- optimized probe sets for nearly all known genes

Problem:

- expensive

Koch, Nature Reviews Drug Discovery (2004)

How to find TaqMan probesets:

Search our local database: http://...../cgi-bin/ps_db.cgi

🗧 TaqMan Probe Set - Windows Inte	ernet Explorer								
🕒 💿 🗢 🙋 http://angiogenesis.d	lkfz.de/cgi-bin/ps_db	.cgi				• + >	< 🔎 Live Search		P -
Datei Bearbeiten Ansicht Eavori X 🍕Konvertieren 👻 🏠 Auswähle	iten E <u>x</u> tras <u>?</u> n								
🚖 Favoriten 🛛 🚔									
🏉 TaqMan Probe Set						🙆 - 🔊	🗸 🖃 🖶 👻 Sejt	e 👻 Si <u>c</u> herheil	: 🕶 Extras 🕶 🔞 🕶
TaqMan Probe Set - Se	arch again								
Sys-UID									
Tube/Location									
Probe-Set-ID									
Target-Gene ga	apdh								
Lot-No									
Stock(ul)									
Function									
nn3									
nn4									
Comment				► More					
Target-Specie	•								
Reset Search New Edit Batc	h-Upload								
UID Tube Probe-Set-ID	Target-Gene	Lot-No	Stock(ul)	Function	nn3	Date	Target-Specie	Comment	
1 6 KK-301- F1-D6 / BOX I_E- HS99999905_m1	GAPDH	1004021	170	glyceraldehyde- 3-phosphate dehydrogenase	Control		Human	Endogenek	ontrolle
2 153 KK-301- F1- D6/Box1- Mm99999915_	Gapdh	996162	250	Oxidoreductase	control	11.08.2011	Mouse	Mus muscul GGTGTGAA	us CGGATTTGGCCGTATT
3 171 KK-301- F1-D6 SAB-PPH00150E	GAPDH		200		control	27-Jun- 2011	Human	SABioscien	ce Salzstudie
<u> </u>							okales Intranet		▶

Search ABI site and order new probesets:

http://bioinfo.appliedbiosystems.com/genome-database/gene-expression.html

Search

select best Match, order

Christian Schwager, 2013, Christian.Schwager@Med.Uni-Heidelberg.de

==>

RT-PCR intstruments

Light-Cycler - Roche

- rotor design
- fast heating / cooling with fan

RT-PCR intstruments

ABI 7900HT

- standard MTP design (96/384-well)
- heating with thermostated metal plate
- extend with auto loader for high throughput operation

Evaluation - CT value

- measure fluorescence
- define background level and noise at first few cylces => define threshold
- as soon as flourescence larger threshold => CT (Cycle at which Threshold crossed)
- CT gives the number of PCR cycles required to generate the same amount of PCR product

Important:

- as higher the CT
- as more cycles required to synthesize a given Amount of DNA
- as less starting DNA
- CT is ~log2:

10 cycles difference

=> 2^10 => ~1000 times less starting material

Cycle number

CT-values

. . .

As more cycles as higher the probaility you are amplifying also artifacts

- contaminating RNAs / DNAs
- unspecific hybridisations
- primer / primer bindings

cDNAs with CT>36 are probably meaningless Don't use them for quantification, only information "very low signal")

CT of 36 means you need to generate 2^36 ~ 60 000 000 000 copies of your original whatever !!

miRNAs with CT>33 are probably meaningless

Compute CT-values

ABI SDS software for a single plate ABI RQ-Manager for multiple plates (up to 10)

- export Amplification data as text files
- convert with **SUMO** into expression matrix, which you can evaluate with **SUMO** or any other software.

Import ct-values => Expression matrix

Import raw CT-values from RQ-manager exported "amplification data"

SUMO

File

Import

ABI rt-Amplification data

s 🖉	UMO									
File	Adjust data	View	Analyse	Utilities	Scripts	Preferences	Documentation	Hel	elp	_
	Import						÷.		ABI rtPCR RQ-Manager amplification data	
	Open data								ABI rtPCR RQ-Manager amplification data - Grubbs outlier removal	
	Open analysis Save analysis								ABI rtPCR SDS data	1
	Paste matrix fro	om clip	oboard					Ľ		

Christian Schwager, 2013, Christian.Schwager@Med.Uni-Heidelberg.de Part of a CT-matrix

From the file dialog select one (or multiple) exported amplification data files.

0	1	2	3	4	5	6	7	8	9	10
1	RQ Manager									
2	StudyName	miRNA-all-tra								
3	Operator									
4										
5	Well	PlateID	Sample	Detector	Task	Ct	delta Rn	delta Ct	Ct Avg	Ct SD
6	1		pm29-24h	miR-29a	Target	18.734985	3.6753058		18.734985	
7	2		am29-72h	miR-29a	Target	21.930326	4.4829555		21.930326	
8	4		pneg-24h	miR-29a	Target	22.344091	4.7119985		22.344091	
9	5		aneg-72h	miR-29a	Target	22.061771	4.5215173		22.061771	
10	6		CTL-24h	miR-29a	Target	22.092705	4.7090883		22.092705	
11	7		CTL-72h	miR-29a	Target	21.667847	4.961025		21.667847	
12	13		pm-100-24h	mir-100	Target	18.971476	4.7722135		18.971476	
13	14		am100-72h	mir-100	Target	28.316633	3.9445922		28.316633	
14	16		pneg-24h	mir-100	Target	25.388992	4.522177		25.388992	
15	17		aneg-72h	mir-100	Target	25.204533	4.310974		25.204533	
•										
Row	Column	Ge	ne-Anno. colil	Data column	IS					

A preview shows a part of the first selectd data file:

Verify:

- The selected data file(s) have the correct structure
- The CT column is grayed

Click OK-button to import the data into SUMO

A parameter dialog opens up:

SUMO - Import RT-PCR data
Average replicas with
C Arithmetic mean 💿 Median
☐ Remove outliers (Grubbs test at p>=0.05)
Replace non numeric values with 40
Replace empty matrix cells with 40
Cancel OK Help

Average replicas: SUMO detects replicates (i.e. IDENTICAL

Gene AND sample name).

Define how to average replicas:

- Arithmetic mean
- Median mean (less sensitive to outliers, recommended)

Remove outliers:

Try to detect obvious outliers, applying the standard statistical Grubbs test. Only use ful for larger replica numbers (>=5)

Replace non numeric values:

RQ-manager exports "not detected" for each PCR where threshold value was never crossed. But with "not detected" you can't calculate nor generate graphs – it is not a number. For most subsequent tasks, **SUMO** will ignore "non numerical values". Another solution could be to set the "not detected" to the maximum number of PCR cycles (as defined on the cycler, in our case most often 40).

A parameter dialog open up:

SUMO - Import RT-PCR data
Average replicas with
C Arithmetic mean 💿 Median
Remove outliers (Grubbs test at p>=0.05)
Replace non numeric values with 40
✓ Replace empty matrix cells with 40
Cancel OK Help

Replace empty matrix cells:

In case you have mixed samples with different probesets (e.g.samples S1..S4 with probesets P1..P3, and samples S5..S8 with probesets P4..P6).

The way SUMO will build the expression matrix, it will leave the complementary matrix cells Empty.

	S1	S2	S3	S4	S5	S 6	S7	S 8
P1	21	22	21	22	NAN	NAN	NAN	NAN
P2	22	23	22	23	NAN	NAN	NAN	NAN
P3	30	31	32	31	NAN	NAN	NAN	NAN
P4	NAN	NAN	NAN	NAN	24	25	24	25
P5	NAN	NAN	NAN	NAN	28	29	28	29
P6	NAN	NAN	NAN	NAN	27	26	25	26

It may be useful to replace such values with a fixed value (e.g. 40).

SUMO analyzes the data files and builds an "Expression matrix":

- Find all measurements where RQ-manager didn't export a number (all samples where threshold never reached or crossed the threshold value) Optionally replace the non-numeric values by e.g. 40, the theortically highest ct value in an RT-PCR run with 40 cycles)
- Seach all unique sample names: "Sample1" is the same as "sample1" "sample1" is not "sample-1" nor "sample_1" nor "sample 1"
- Search all **unique** gene names
- Build a matrix with all **unique samples in columns** x all unique genes in rows
- Sort all ct-values into the corresponding cells (unique sample / gene)
- Sort all rn-values into the corresponding cells (unique sample / gene)
- Average all ct values/rn-values in each cell (e.g. technical replicas with always the same name)
- Compute average and sdev from ct / rn values accross all samples for each gene and add 4 columns to the matrix
 - average ct may be used lateron to filter overall lowly expressed genes
 - average rn may be used lateron to identify genes with overall low fluorescent signal which sometimes may generate erraneous ct-values

Preview the generated matrix (optional):

Open the experiment tree and click Data table node

	SUMO - D:\Dat	a\rtPCR\RPTEC plu	s purp_CDKN2a-3 t	forms.sdm-Amp	lification Dat	a.txt : 27 x	5	/									X
<u>F</u> ile	<u>A</u> djust data	<u>V</u> iew A <u>n</u> alyse	Utilities Scripts	<u>P</u> references	<u>D</u> ocumentati	ion <u>H</u> elp	/										
	Groups	t-Test	U-/Mann-Whitney- Wilcoxon-test	ANOVA	PI		SAM										
	Survival	кмс	PCA	COLOM	Gene- Build	-Net	Venn	Classificatio	n								
Ē	D:\Data\rtPCR\RF	PTEC plus purp_CDKI	N2a-3 forms.sdm-Am	p Statistics dat	a Log												
	Data table			D:\Data\rtPC	R\RPTEC plus	purp_CDKN	2a-3 forms.sd	m-Amplificatio	on Data.txt								
	Gene lists			File	View	e[▼D	date										
					1	2	3	4	5	6	7	8	9	10	11	12	13
				1	Index	Mean-Rn	SDev-Rn	Mean-CT	SDev-CT	ADK-a	ADK-b	ADK-c	C11orf43-a	C11orf43-b	C11orf43-c	NRF1-a	NRF1-b
				2	CDKN2a-ARF	2.707	0.230	31.000	0.719	30.709	30.768	30.791	30.546	30.234	30.516	30.706	30.985
				3	CDKN2a-INK4	4.656	0.139	27.827	0.583	27.168	27.336	27.079	28.028	28.350	28.198	27.627	27.902
				4	CDKN2a-p16	5.389	0.182	25.663	0.418	25.153	25.524	25.058	26.007	26.326	26.019	25.508	25.905
				5	Gapdh-Hs	4.826	0.228	20.991	0.685	21.352	21.359	21.408	20.627	20.903	21.057	19.896	20.318
				6	RPLP-0	4.804	0.168	22.777	0.694	22.824	22.976	22.806	22.142	21.951	22.299	22.252	22.337
				•										1			F
	1	III															

Export the just generated matrix: **SUMO**

File

Save matrix

🚵 si	SUMO - D:\Data\rtPCR\RPTEC plus purp_CDKN2	2a-3 forms.sdm-Am	plification Data.txt	: 27 :	x 5
File	Adjust data View Analyse Utilities Sci	ripts Preferences	Documentation	Help	
	Import Open data		•		SAM
	Open analysis Save analysis			•	Venn
	Paste matrix from clipboard			CDKN	12a-3 forms
	Save matrix			U U	ndate
	Add data				
	Info				3
	Close			1-Rn	SDev-Rn
	Exit			7	0.230
	UNUSED FLOREN STORE STORE ANT 1, 26-		+2.2	5	0.139
	U:\User\Elena\qPCK\raw files\GESAWIT(1-30a	bc merged matrix.tx	tt;5,2	9	0.182
	U:\User\Elena\qPCR\qPCR analysis.csa	(photon_norm.txt;34	4,2	5	0.228
	UVUser/Flena\oPCR\oPCR all/8 2			4	0.168

Edit the header – Sample annotations (optional):

It may be useful to have additional header rows containing treatment details:

- Cell type (fibroblasts, endothelial, a549, ...)
- Phenotype (healthy, primary cancer, recurrent, metastasis, ...)
- Kind of treatment (drug1, drug2,)
- Dose (10mg, 20mg, ...)

- ...

This may help lateron to (auto-) group the samples for statistic tests / graphs

A basic table editor opens-up:

2	Table edit	tor: Header	- D:\Data\rtf	PCR\RPTEC p	olus purp_CD	KN2a-3 form	ns.sdm-Amp	lification Da	ta.txt						
I	ile <u>D</u> ata	<u>H</u> elp													
		► ii ii	! 🕫 🖾	# ↑•↓ -											
C	/iew / Edit da	ata Info													
I		1	2	3	4	5	6	7	8	9	10	11	12	13	14
ŀ	1	Index	Mean-Rn	SDev-Rn	Mean-CT	SDev-CT	ADK-a	ADK-b	ADK-c	C11orf43-a	C11orf43-b	C11orf43-c	NRF1-a	NRF1-b	NRF1-c
											1				
h	•														•
É															

Edit the header – Sample annotations (optional):

Select a line by clicking the row hea	der:	Inser rows	t / del	ete	Cop row	oy / P s	aste					
	🚰 Table editor: Hea	ager - D:\Data\r	PCR\RPTEC	plus purp_Cl	DKN2a-3 for	ms.sdm-Am	plification D	ata.txt				x
	Eile Data Help	• 11 4 12	A înj •	•								
	1	2	3	4	5	6	7	8	9	10	11	12
	1 Jundau	Moon Bri	SDay Pr	Moon CT	SDou CT				C11~(42 -	C11~(42 b	C11orM2 o	NDE1
		Meannn	SDevini		SDev-CI	ADINA	ADK-0	ADN-C	0.1101143-8	C110II43-D	C1101143-C	NDE 1-

Edit the contents of any header cell, any way you like.

When done **update** the data matrix into **SUMO**:

🚵 Table editor: Header	r - D:\Data\rtf	PCR\RPTEC
File Data Help		
Open	🚮 oʻt 💼 🛛	A 14
Save as	· · · · ·	
Update	1	2
Print	2	3
Exit	Mean-Rn	SDev-Rn

SUMO - D:\Data\rtPCR\test-multi-analyze all.sdm-Amplification Data.txt : 12 x 4 Edit the data (optional): Adjust data View Analyse Utilities Scripts Preferences Documentation Help II_/Mann_Whitney ANOVA РТМ SAM Groups t-Test Wilcoxon_test Change any Gene-Net Survival кмс PCA COLOM Venn Classification Builder D:\Data\rtPCR\test_multi_a Statistics data Log data annotation / matrix cell 4 x 12 cells D:\Data\rtPCR\test_multi_analyze all sdm_Amplification Data tx Data table 1<mark>1</mark>4 File View -Update Gene lists SDev-CT 7902 7902 D 7904 7904 D 7908 7908 D SDev-Br Index Mean-Rn Mean-CT D31-Pecam 4.929 0.148 26.250 0.336 26.044 26.501 26.018 25.670 26.811 26.536 3 Gandh-Mm 5 065 17 942 0 246 17 971 new value 17 939 17 660 18 219 18 264 MKi67 5 176 0.085 21.885 1.941 21 855 21 699 21 568 22 499 21 928 0.240 VEGEA 5 561 0.115 26 173 0 452 26.303 25.841 26.292 25.952 26.940 26.521 • Ш

Rearrange data colums to sort samples in any convenient order:
 Click into a column header cell, and drag the seöected column wherever you like it

- Click **Update** button to save modifications to **SUMO** data matrix.

Analyze / view your data

One picture is better then 1250 numbers – View the data as heatmap

- Black = low ct-value => higz abundance
- Bright red = high ct-value => low abundance

SUMO

View

Endogenous controls

CT value is influenced by

- total number of grown cells
- efficiency of cell harvesting
- efficiency of RNA extraction
- RNA quality what if RNA is degraded in such a way, that one of the PCR primer sites is affected in one of the genes ?
- RNA concentration measurement
- pipetting accuray
- RT-PCR instrument

Use controls to estimate all effects and compensate them by normalisation => Control genes

Best would be a reference which is included in your sample => Endogenous controls

- Genes which are always expressed at high level, whatever the cell is doing
- Genes sitting deeply inside vital metabolic pathways

What if the pathway of your endogenous control gene is affected by your treatment? You would normalize your regulation effect out.

=> Multiple control genes, from different vital metabolic pathways

View endogenous controls

Use multiple endogenous control genes from different pathways

```
Gapdh - energy metabolism
Rpsxx / prlxx - protein synthese pathway
Hprt1 - salvage pathway (purines)
Actb
UBC
```

• • • •

Review the controls and

- DON'T use obvious outliers
- Don't use controls which follow the treatment groups (regulated too)

Use average (mean or median) from controls to normalize your samples

dCT-values – Normalization by endogenous controls:

Select

SUMO

Adjust Normalize conditons Centering with / to common Mean /Median

A table opens up, showing all "gene" annotation columns.

0	1	2	3	4	
1	Index	Mean-Rn	SDev-Rn	Mean-CT	SDev-CT
2					
3	CD31-Pecan	4.929	0.148	26.250	0.336
4	Gapdh-Mm	5.065	0.100	17.942	0.246
5	MKi67	5.176	0.085	21.885	0.240
	VEGFA	5.561	0.115	26.173	0.452

Double click the column, which contains "gene names"

An input dialog opens up:

Control gene normalisation - define co	ntrols	
Define contorl names (e.g. "gapdh a	actb hprt1")	
gapdh act1 ubc		•
	<u>O</u> K <u>C</u> and	cel <u>H</u> elp

Define the names of control genes you want to use (partial but unique significant names)

Normalization – Centering ??

Your CT-values are ~log-2 (doubling of DNA per PCR-cycle)

Thus, normalization has to be done by SUBTRACTING (=centering) the respective reference value (With linear intensities you would divide.)

dCT-values – Normalization with endogenous controls:

For each individual sample,

- compute average ct from the respective control(s)
- Subtract this average from the genes to analyze
- => dCT

Now the, the dCT show relative CT-changes against the sample's control(s). Information about averall ct level is lost.

Look at the example:

After centering **with** endo-controls, most interesting gene seems to be **CTCFL**: Largest ct-difference between groups !!

SUMO - Dotchart

Instead of centering with, you could also center to the endo controls.

- Compute a grand average from all endo controls in all samples
- Shift all CT-values up/down in each sample for all tested genes in such a way, that the average of endo-controls in this sample will get the grand average (i.e. virtually dilute/concentrate your starting material to same amount, defined by controls)

SUMO - Dotchart

- sample individual effects are removed - overall information about expression is kept

After centering to control, it is abvious: CTCFL is useless:

- signal levels above 36 !!
- In two treatment groups even around 40

Most interesting: PARP4

See SUMO Help pages for more details how to customize dot chart

ddCT - Specific regulation of genes in your samples

- Compute regulation against control / reference samples (a single or better the mean/median of a set of ref. samples)

- subtract reference-mean from your samples

SUMO main menu

Adjust data

Normalise genes Hybridisation normalisation/centering Mean/Median centering

Assign the Reference/Control samples to group 2:

- Select all Controls in Condition list
- Double click Group-2 in Groups list Assign the "treated" samples to group 1/
- Select all Treatments in Condition list
- Double click Group-1 in Groups list Click OK-button

You may perform this for different sample groups independently (e.g. Normalize all treated fibroblasts fo control fibroblasts, All endothelial cells to endothelial controls,...)

Don't forget to save **new** matrix.

See SUMO Help pages for more details how to use the grouping tools

😽 Centre genes: By hybridisations / Median hybr... 💶 🗖 🗙 9 Groups Info Assign conditions to groups -Conditions Groups cont-3663-a Group-1 (25) cont-3666-a Group-2 (3) cont 3688-a CRL 1545 2GY C12 1-a CRL 1545 2GY C12 2-a CRL 1545 contr C12 1 CRL 1545 contr. e12 2-a CRL 1545 SAHA 2GY C12 1-a CRL 1545 SAHA 2GY C12 2-a CRL 1545 SAHA C12 1-a CRL 1545 SAHA C12 2-a HBT 85 0.5GY C12 1-a HBT 85_0.5GY_C12_2-a HBT 85_contr_C12_1-a HBT 85_contr_C12_2-a HBT 85_SAHA_0.5GY_C12_1-a HBT 85_SAHA_0.5GY_C12_2-a HBT 85_SAHA_C12_1-a HBT 85_SAHA_C12_2-a HIT-3614-a HIT-3631-a HIT-3633-a SAHA-3602-a SAHA-3609-a SAHA-3640-a SAHA-HIT-3665-a SAHA-HIT-3672-a SAHA-HIT-3674-a Invert Ungrouped Find 🔽 Self Conditions -> Group Label conditions by Index Release all groups Save / Load groups Load grouping Ŧ Save grouping Recent groupings Ŧ V OK X Cancel 💙 Help <u>A</u>bout

ddCT to Log-2 regulation

Still, our data are CT-values.

ddCT > 0: more ct-cycles are required to synthesie the same amout of DANN in your sample compared to the control sample
 => Sample is down-regulated compared to control.
 ddCT < 0: less ct-cycles are required to synthesie the same amout in your sample

=> Sample is up-regulated compared to control.

To fix this, invert the sign: $-(ddCT-values) = > \sim \log 2$ regulation

SUMO main menu Adjust data Arithmetic operations Invert sign

Assign all samples to Group1 and press RUN button.

Log-2 regulation => relative regulation

SUMO main menu Adjust data Data transformation Exp2

SUMO - D:\Data\rtPCR\test-multi-analyze all.sdm-Amplification Data.txt : 12 x 4										
File	Adjust data	View	Analyse	Utilities	S	cript	s Prefere	nces D	ocumentati	ion
	Transp Annota	ose mat ation	rix		+	ney ist	- AN	OVA	PTN	И
	TruncateData imputationReplica averagingFilterNormalise ConditionsNormalise Genes			ana ĵ1ę	C alyze all.sdm ↓ ▼ Up	Gene- Build	Gene-Net Builder n Data.txt			
	Data tr	ansform	ation ta adjustm	ent	•		Log2 Log10 to	Log2		T
	Arithmetic operations			+	Exp2 Ratio to "intensity"					
	Backup data 🔸				+		5.176	0.085	21.885	
			5	VEG	FA	4	5.561	0.115	26.173	

What to do now ?

Use SUMO to

- Run statistic test
- generate graphs for your test groups
- save transformed data as tab delimited text (File | Save matrix)

How to get SUMO - www.oncoexpress.de/software/sumo - Download

What else can I do with **SUMO** – Look in **SUMO** web pages.

Statistical tests

Question: Which genes are statistically significant differentially expressed between Samples from Treatment1 \Leftrightarrow Treatment2 \Leftrightarrow Treatment3 \Leftrightarrow ...

SUMO offers to perform a variaty of standard class tests to find statistically significant regulated genes between your treatment groups:

- Gaussian distrubtion based parametric tests
- Gaussian distrubtion based permutaion tests
- Non-parametric Rank tests
- Single class
- Two class unpaired
- Paired samples
- Multiclass

See **SUMO** Help pages for more details about hypthesis testing / class tests

View grouped data

Set up a "fake" statitical test to arrange samples in groups.

This simplifies to create graphs (heatmaps / dot-,bar, bow-whisker charts

- 2-class tests – for two groups - ANOVA – for 3 or more groups

🔬 SUMO - D:\Da	ta\rtPCR\test-multi	-analyze all.sdm-An	nplification Da	ta.txt : 12 x 4			
<u>F</u> ile <u>A</u> djust data	<u>V</u> iew A <u>n</u> alyse	Utilities Scripts	<u>P</u> references	<u>D</u> ocumentation	<u>H</u> elp		
Groups	t-Test	U-/Mann-Whitney- Wilcoxon-test	ANOVA	РТМ	SAM		
Survival	кмс	PCA	2 солом	Gene-Net Builder	Venn	Classification	
D:\Data\rtPCR\te 4 x 12 cells Data table	est-multi-a Statistics	data Log					
Gene lists							
<	•						

View grouped data

The arouping tool opens up:	ANOVA; 12 samples	
	Groups Decementer Linfo	
Set number of groups (ANOVA) —	Groups	
	Number of groups 3	
Select individual samples and	Conditions to groups Conditions Groups (Groups (4))	
Double click respective group	7902_D New name for Group-2 (4)	
Repeat this for all relevant groups	7904_D none	
	7908_D	
Change groups names:	7909 7909 D	
Right click a group name.	7911	
select Rename from context menu	7912	
	⁷⁹¹² _D	
Rearder Groups	Invert Ungrouped Find Auto group	
Soloct a group	Index Release all groups	
Dreg it to enother position in the group list	Save / Load groups	
Drag it to another position in the group list	Load grouping Sav	ve grouping
Repeat this for all relevant groups		•
	=> Script 🖌 Run 📝 OK 🗶 Cancel ? Hel	lp <u>A</u> bout
	7	1

See SUMO Help pages for more details about the grouping tool

View group data

View group data

Heatmap of grouped data

See **SUMO** Help pages for more details how to customize the heatmap

View group data's profiles

View group data's dot chart (bow whisker plot / bar chart)

How to get **SUMO**?

=> http://www.oncoexpress.de/software/sumo

What else can I do with *SUMO* – Look in *SUMO* web pages.

If I don't want to use **SUMO** – what else could I use ?

Any other program where you can work with data matrices.